Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies.
نویسندگان
چکیده
Solids resulting from pretreatment of corn stover by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, lime, and sulfur dioxide (SO(2)) technologies were hydrolyzed by enzyme cocktails based on cellulase supplemented with beta-glucosidase at an activity ratio of 1:2, respectively, and augmented with up to 11.0 g xylanase protein/g cellulase protein for combined cellulase and beta-glucosidase mass loadings of 14.5 and 29.0 mg protein (about 7.5 and 15 FPU, respectively)/g of original potential glucose. It was found that glucose release increased nearly linearly with residual xylose removal by enzymes for all pretreatments despite substantial differences in their relative yields. The ratio of the fraction of glucan removed by enzymes to that for xylose was defined as leverage and correlated statistically at two combined cellulase and beta-glucosidase mass loadings with pretreatment type. However, no direct relationship was found between leverage and solid features following different pretreatments such as residual xylan or acetyl content. However, acetyl content not only affected how xylanase impacted cellulase action but also enhanced accessibility of cellulose and/or cellulase effectiveness, as determined by hydrolysis with purified CBHI (Cel7A). Statistical modeling showed that cellulose crystallinity, among the main substrate features, played a vital role in cellulase-xylanase interactions, and a mechanism is suggested to explain the incremental increase in glucose release with xylanase supplementation.
منابع مشابه
Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments.
Although essential to enzymatic hydrolysis of cellulosic biomass to sugars for fermentation to ethanol or other products, enzyme adsorption and its relationship to substrate features has received limited attention, and little data and insight have been developed on cellulase adsorption for promising pretreatment options, with almost no data available to facilitate comparisons. Therefore, adsorp...
متن کاملEffect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies.
Moderate loadings of cellulase enzyme supplemented with beta-glucosidase were applied to solids produced by ammonia fiber expansion (AFEX), ammonia recycle (ARP), controlled pH, dilute sulfuric acid, lime, and sulfur dioxide pretreatments to better understand factors that control glucose and xylose release following 24, 48, and 72 h of hydrolysis and define promising routes to reducing enzyme d...
متن کاملComparison of enzymatic reactivity of corn stover solids prepared by dilute acid, AFEX™, and ionic liquid pretreatments
BACKGROUND Pretreatment is essential to realize high product yields from biological conversion of naturally recalcitrant cellulosic biomass, with thermochemical pretreatments often favored for cost and performance. In this study, enzymatic digestion of solids from dilute sulfuric acid (DA), ammonia fiber expansion (AFEX™), and ionic liquid (IL) thermochemical pretreatments of corn stover were f...
متن کاملPhysical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.
In order to investigate changes in substrate chemical and physical features after pretreatment, several characterizations were performed on untreated (UT) corn stover and poplar and their solids resulting pretreatments by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, flowthrough, lime, and SO(2) technologies. In addition to measuring the chemica...
متن کاملAdsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water
BACKGROUND In the bioconversion of lignocellulosic substrates, the adsorption behavior of cellulase onto lignin has a negative effect on enzymatic hydrolysis of cellulose, decreasing glucose production during enzymatic hydrolysis, thus decreasing the yield of fermentation and the production of useful products. Understanding the interaction between lignin and cellulase is necessary to optimize t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 100 18 شماره
صفحات -
تاریخ انتشار 2009